11,168 research outputs found

    Strongly separated pairs of core electrons in computed ground states of small molecules

    Get PDF
    We have performed full configuration interaction computations of the ground states of the molecules Be, BeH_2, Li, LiH, B, and BH and verified that the core electrons constitute "separated electron pairs." These separated pairs of core electrons have nontrivial structure; the core pair does not simply occupy a single spatial orbital. Our method of establishing the presence of separated electron pairs is direct and conclusive. We do not fit a separated pair model; we work with the wavefunctions of interest directly. To establish that a given group of spin-orbitals contains a quasi-separated pair, we verify by direct computation that the quantum state of the electrons that occupy those spin-orbitals is nearly a pure 2-electron state.Comment: To appear in Computational and Theoretical Chemistr

    A new effect in the low magnetic field ultrasonic attenuation of impure superconducting niobium

    Get PDF
    Low magnetic field ultrasonic attenuation of impure superconducting niobiu

    The beta function and equation of state for QCD with two flavors of quarks

    Full text link
    We measure the pressure and energy density of two flavor QCD in a wide range of quark masses and temperatures. The pressure is obtained from an integral over the average plaquette or psi-bar-psi. We measure the QCD beta function, including the anomalous dimension of the quark mass, in new Monte Carlo simulations and from results in the literature. We use it to find the interaction measure, E-3p, yielding non-perturbative values for both the energy density E and the pressure p. uuencoded compressed PostScript file Revised version should work on more PostScript printers.Comment: 24 page

    Heavy Dynamical Fermions in Lattice QCD

    Full text link
    It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge coupling. We derive a simple expression for the shift in the gauge coupling induced by NfN_f flavors of heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of quark mass and NfN_f. We find remarkable agreement with our expression down to a fairly light quark mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do more than just shift the gauge coupling. We observe confinement-deconfinement transitions at β=0\beta=0 induced by a large number of heavy quarks. We comment on the relevance of our results to contemporary simulations of QCD which include dynamical fermions.Comment: COLO-HEP-311, 26 pages and 6 postscript figures; file is a shar file and all macros are (hopefully) include

    Multiple steady states for characteristic initial value problems

    Get PDF
    The time dependent, isentropic, quasi-one-dimensional equations of gas dynamics and other model equations are considered under the constraint of characteristic boundary conditions. Analysis of the time evolution shows how different initial data may lead to different steady states and how seemingly anamolous behavior of the solution may be resolved. Numerical experimentation using time consistent explicit algorithms verifies the conclusions of the analysis. The use of implicit schemes with very large time steps leads to erroneous results

    Solar flux and its variations

    Get PDF
    Data are presented on the solar irradiance as derived from a number of sources. An attempt was made to bring these data onto a uniform scale. Summation of fluxes at all wavelengths yields a figure of 1357.826 for the solar constant. Estimates are made of the solar flux variations due to flares, active regions (slowly varying component), 27-day period, and the 11-yr cycle. Solar activity does not produce a significant variation in the value of the solar constant. Variations in the X-ray and EUV portions of the solar flux may be several orders of magnitude during solar activity, especially at times of major flares. It is established that these short wavelength flux enhancements cause significant changes in the terrestrial ionosphere

    Stability analysis of intermediate boundary conditions in approximate factorization schemes

    Get PDF
    The paper discusses the role of the intermediate boundary condition in the AF2 scheme used by Holst for simulation of the transonic full potential equation. It is shown that the treatment suggested by Holst led to a restriction on the time step and ways to overcome this restriction are suggested. The discussion is based on the theory developed by Gustafsson, Kreiss, and Sundstrom and also on the von Neumann method
    corecore